570 research outputs found

    Structure preserving schemes for mean-field equations of collective behavior

    Full text link
    In this paper we consider the development of numerical schemes for mean-field equations describing the collective behavior of a large group of interacting agents. The schemes are based on a generalization of the classical Chang-Cooper approach and are capable to preserve the main structural properties of the systems, namely nonnegativity of the solution, physical conservation laws, entropy dissipation and stationary solutions. In particular, the methods here derived are second order accurate in transient regimes whereas they can reach arbitrary accuracy asymptotically for large times. Several examples are reported to show the generality of the approach.Comment: Proceedings of the XVI International Conference on Hyperbolic Problem

    Bragg concentrators for hard (> 10 keV) X-ray astronomy: Status report

    Get PDF
    The use of focusing telescopes in hard X-ray (E > 10 keV) astronomy will provide better flux sensitivity and imaging perfomances with respect to the directviewing detectors, utilized until now. We present recent results obtained from our Group regarding the possible use of Bragg-diffraction technique to design hard X-ray focusing telescopes

    Second-level NIST randomness tests for improving test reliability

    Get PDF
    Testing Random Number Generators (RNGs) is as important as designing them. Here we consider the NIST test suite SF 800-22 and we show that, as suggested by NIST itself, to reveal non-perfect generators a more in-depth analysis should be performed using the outcomes of the suite over many generated sequences. Testing these second-level statistics is not trivial and, relying on a proper model that takes into account the errors due to the approximations in the first level tests, we propose a tuning of the parameters in the simplest cases. The validity of our consideration is widely supported by experimental results on several RNG currently employed by major IT players, as well as a chaos-based RNG designed by authors

    On the Approximation Errors in the Frequency Test Included in the NIST SP800-22 Statistical Test Suite

    Get PDF
    In previous papers we have addressed the problem of testing Random Number Generators (RNGs) through statistical tests, with particular emphasis on the approach we called second-level testing. We have shown that this approach is capable of achieving much higher accuracy in exposing non-random generators, but may suffer from reliability issues due to approximations introduced in the test. Here we consider the NIST Frequency Test and present a mathematical expression of the error introduced by approximating the effective discrete distribution function with its continuous limit distribution. The matching against experimental data is almost perfect. © 2008 IEEE

    A 3 GHz spread spectrum clock generator for SATA applications using chaotic PAM modulation

    Get PDF
    This paper proposes a prototype of a Spread Spectrum Clock Generator which is the first known specifically meant for 3 GHz Serial ATA-II applications. The modulation is obtained from a fractional PLL which employs a Delta-Sigma modulator. A further innovative aspect of our work is that our prototype takes advantage of a chaotic PAM as driving signal, instead a triangular signal as in all spread spectrum generators proposed in literature for SATA-II. In this way we avoid the periodicity of the modulated clock, completely flattening the peaks in the power spectral density. The circuit prototype has been designed n 0.13 μm CMOS technology and achieves a peak reduction greater than 14 dB measured at RBW = 100 kHz. The chip active area is 0.27×0.78 mm2 and the power consumption is as low as 14.7 mW. © 2008 IEEE

    Asymptotic expressions of mismatch variance in interdigitated geometries

    Get PDF
    Performance in analog integrated circuits strongly depends on the mismatch between nominally identical devices. In this work we derive closed-form asymptotic expressions describing mismatch variance in multifinger structures, under the assumption of Gaussian autocorrelation for the mismatch-generating stochastic process. The analysis is performed on interdigitated geometries, eventually modified to make them common-centroid. Comparison with the numerical results provided by an independent model validates the theoretical expressions presented here

    Resonate and fire dynamics in Complex Oscillation Based Test of analog filters

    Get PDF
    Recently, proposals have been made for enhancing the Oscillation Based Test (OBT) methodology by using non-plain oscillation regimes, leading to so called Complex Oscillation Based Test (COBT). Here we focus on a recently illustrated strategy for the testing of analog 2nd order filters, showing that the COBT dynamics is quite similar to that expressed by Resonate & Fire (R+F) neuron models. In this interpretation, the testing approach can be related to firing-rate measures. A brief description is given of the mathematical models necessary to achieve a precise characterization of firing times, showing how it can be used for testing purposes. A practical example with simulation data is also provided. © 2011 IEEE

    Stability and mismatch robustness of a leakage current cancellation technique

    Get PDF
    Leakage discharge currents represent one of the most detrimental factors for the maximum hold time in analog sample-and-hold circuits. Apart from the obvious passive solution of enlarging the sampling capacitor, alternatives based on active circuits have been proposed. We focus here on an existing solution which has proven to be effective in reducing the leakage discharge, hence extending the hold time, by a factor of 20. Being based on a feedback circuit built around the hold capacitor, it is paramount to understand its stability properties. This work tries to close the gap by analyzing the closed-loop stability of the nominal circuit. Classical control systems techniques are employed to thoroughly analyze the dynamic behaviour of the feedback circuit, highlighting the detrimental effect of device mismatches

    A Zero-Transient Dual-Frequency Control for Class-E Resonant DC-DC Converters

    Get PDF
    In this paper, a dual-frequency control method for regulating the output power in class-E resonant DC-DC converters has been introduced. As in the standard ON-OFF control or other recently proposed dual-frequency controls, the approach is based on the ability of the converter to alternately operate in a high- and a low-power state. The proposed solution has a twofold advantage: on the one hand, soft-switching capabilities (i.e., Zero-Voltage and Zero-Voltage-Derivative switching) are preserved in both operating states; on the other hand, it is possible to reduce to zero the transient time required to switch from one state to the other one. The most straightforward consequence is the possibility to increase to very large values the frequency at which the two operating states are switched, up to the same order of magnitude as the main switching frequency of the converter. In this way, the additional ripple introduced by the proposed dual-frequency control can be decreased to a negligible value. The approach has been validated by measurements on a prototype operating between 4 MHz and 8 MHz and in which it has been possible to increase the control frequency up to 500 kHz

    Best-fit results from application of a thermo-rheological model for channelized lava flow to high spatial resolution morphological data

    Get PDF
    The FLOWGO thermo-rheological model links heat loss, core cooling, crystallization, rheology and flow dynamics for lava flowing in a channel. We fit this model to laser altimeter (LIDAR) derived channel width data, as well as effusion rate and flow velocity measurements, to produce a best-fit prediction of thermal and rheological conditions for lava flowing in a ~1.6 km long channel active on Mt. Etna (Italy) on 16th September 2004. Using, as a starting condition for the model, the mean channel width over the first 100 m (6 m) and a depth of 1 m we obtain an initial velocity and instantaneous effusion rate of 0.3–0.6 m/s and ~3 m3/s, respectively. This compares with field- and LIDAR-derived values of 0.4 m/s and 1–4 m3/s. The best fit between model-output and LIDAR-measured channel widths comes from a hybrid run in which the proximal section of the channel is characterised by poorly insulated flow and the medial-distal section by well-insulated flow. This best-fit model implies that flow conditions evolve down-channel, where hot crusts on a free flowing channel maximise heat losses across the proximal section, whereas thick, stable, mature crusts of ′a′a clinker reduce heat losses across the medial-distal section. This results in core cooling per unit distance that decreases from ~0.02–0.015°C m−1 across the proximal section, to ~0.005°C m−1 across the medial-distal section. This produces an increase in core viscosity from ~3800 Pa s at the vent to ~8000 Pa s across the distal section
    • …
    corecore